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Every year billions of Euros are lost worldwide due to credit card fraud. Thus, forcing financial institu-

tions to continuously improve their fraud detection systems. In recent years, several studies have pro-

posed the use of machine learning and data mining techniques to address this problem. However, most

studies used some sort of misclassification measure to evaluate the different solutions, and do not take

into account the actual financial costs associated with the fraud detection process. Moreover, when con-

structing a credit card fraud detection model, it is very important how to extract the right features from

the transactional data. This is usually done by aggregating the transactions in order to observe the spend-

ing behavioral patterns of the customers. In this paper we expand the transaction aggregation strategy,

and propose to create a new set of features based on analyzing the periodic behavior of the time of a

transaction using the von Mises distribution. Then, using a real credit card fraud dataset provided by a

large European card processing company, we compare state-of-the-art credit card fraud detection models,

and evaluate how the different sets of features have an impact on the results. By including the proposed

periodic features into the methods, the results show an average increase in savings of 13%.

© 2016 Elsevier Ltd. All rights reserved.
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1. Introduction

The use of credit and debit cards has increased significantly in

the last years, unfortunately so has fraud. Because of that, billions

of Euros are lost every year. According to the European Central

Bank (European Central Bank, 2014), during 2012 the total level of

fraud reached 1.33 billion Euros in the Single Euro Payments Area,

which represents an increase of 14.8% compared with 2011. More-

over, payments across non traditional channels (mobile, internet,

etc.) accounted for 60% of the fraud, whereas it was 46% in 2008.

This opens new challenges as new fraud patterns emerge, and cur-

rent fraud detection systems are less successful in preventing these

frauds.

Furthermore, fraudsters constantly change their strategies to

avoid being detected, something that makes traditional fraud de-

tection tools such as expert rules inadequate (Van Vlasselaer et al.,

2015), moreover, machine learning methods as well can be inade-

quate if they miss to adapt to new fraud strategies, i.e., static mod-

els that are never updated (Dal Pozzolo, Caelen, Le Borgne, Water-

schoot, & Bontempi, 2014).

The use of machine learning in fraud detection has been an

interesting topic in recent years. Several detection systems based
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n machine learning techniques have been successfully used for

his problem (Bhattacharyya, Jha, Tharakunnel, & Westland, 2011).

hen constructing a credit card fraud detection model, there are

everal factors that have an important impact during the train-

ng phase: Skewness of the data , cost-sensitivity of the appli-

ation, short-time response of the system, dimensionality of the

earch space and how to preprocess the features (Bachmayer,

008; Bolton, Hand, Provost, & Breiman, 2002; Dal Pozzolo et al.,

014; Van Vlasselaer et al., 2015; Whitrow, Hand, Juszczak, Weston,

Adams, 2008). In this paper, we address the cost-sensitivity and

he features preprocessing to achieve improved fraud detection and

avings.

Credit card fraud detection is by definition a cost-sensitive

roblem, in the sense that the cost due to a false positive is differ-

nt than the cost of a false negative. When predicting a transaction

s fraudulent, when in fact it is not a fraud, there is an administra-

ive cost that is incurred by the financial institution. On the other

and, when failing to detect a fraud, the amount of that trans-

ction is lost (Hand, Whitrow, Adams, Juszczak, & Weston, 2007).

oreover, it is not enough to assume a constant cost difference

etween false positives and false negatives, as the amount of the

ransactions varies quite significantly; therefore, its financial im-

act is not constant but depends on each transaction. In Correa

ahnsen, Stojanovic, Aouada, and Ottersten (2013), we proposed

new cost-based measure to evaluate credit card fraud detection

odels, taking into account the different financial costs incurred

y the fraud detection process.
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Table 1

Classification confusion matrix.

Actual positive Actual negative

y = 1 y = 0

Predicted positive True positive (TP) False positive (FP)

c = 1

Predicted negative False negative (FN) True positive (TN)

c = 0

Table 2

Cost matrix (Elkan, 2001).

Actual positive Actual negative

yi = 1 yi = 0

Predicted positive CTPi
CFPi

ci = 1

Predicted negative CFNi
CTNi

ci = 0
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When constructing a credit card fraud detection model, it is

ery important to use those features that allow accurate classifi-

ation. Typical models only use raw transactional features, such as

ime, amount, place of the transaction. However, these approaches

o not take into account the spending behavior of the customer,

hich is expected to help discover fraud patterns (Bachmayer,

008). A standard way to include these behavioral spending pat-

erns is proposed in (Whitrow et al., 2008), where Whitrow et al.

roposed a transaction aggregation strategy in order to take into

ccount a customer spending behavior. The computation of the ag-

regated features consists in grouping the transactions made dur-

ng the last given number of hours, first by card or account num-

er, then by transaction type, merchant group, country or other,

ollowed by calculating the number of transactions or the total

mount spent on those transactions.

In this paper we first propose a new savings measure based

n comparing the financial cost of an algorithm versus using no

odel at all. Then, we propose an expanded version of the trans-

ction aggregation strategy, by incorporating a combination crite-

ia when grouping transactions, i.e., instead of aggregating only by

ard holder and transaction type, we combine it with country or

erchant group. This allows to have a much richer feature space.

Moreover, we also propose a new method for extracting peri-

dic features in order to estimate if the time of a new transaction

s within the confidence interval of the previous transaction times.

he motivation is that a customer is expected to make transactions

t similar hours. The proposed methodology is based on analyzing

he periodic behavior of a transaction time, using the von Mises

istribution (Fisher, 1995).

Furthermore, using a real credit card fraud dataset provided

y a large European card processing company, we compare the

ifferent sets of features (raw, aggregated, extended aggregated

nd periodic), using two kind of classification algorithms; cost-

nsensitive (Hastie, Tibshirani, & Friedman, 2009) and example-

ependent cost-sensitive (Elkan, 2001). The results show an

verage increase in the savings of 13% by using the proposed peri-

dic features. Additionally, the outcome of this paper is being cur-

ently used to implement a state-of-the-art fraud detection system,

hat will help to combat fraud once the implementation stage is

nished.

The remainder of the paper is organized as follows. In Section 2,

e explain the background on credit card fraud detection, and

pecifically the measures to evaluate a fraud detection model. Then

n Section 3, we discuss current approaches to create the features

sed in fraud detection models, moreover, we present our pro-

osed methodology to create periodic based features. Afterwards,

he experimental setup is given in Section 4. In Section 5, the re-

ults are shown. Finally, conclusions and discussions of the paper

re presented in Section 6.

. Credit card fraud detection evaluation

A credit card fraud detection algorithm consists in identifying

hose transactions with a high probability of being fraud, based

n historical fraud patterns. The use of machine learning in fraud

etection has been an interesting topic in recent years. Differ-

nt detection systems that are based on machine learning tech-

iques have been successfully used for this problem, in particu-

ar: neural networks (Maes, Tuyls, Vanschoenwinkel, & Manderick,

002), Bayesian learning (Maes et al., 2002), artificial immune sys-

ems (Bachmayer, 2008), association rules (Sánchez, Vila, Cerda, &

errano, 2009), hybrid models (Krivko, 2010), support vector ma-

hines (Bhattacharyya et al., 2011), peer group analysis (Weston,

and, Adams, Whitrow, & Juszczak, 2008), random forest (Correa

ahnsen et al., 2013; Dal Pozzolo et al., 2014), discriminant
nalysis (Mahmoudi & Duman, 2015) and social network analysis

Van Vlasselaer et al., 2015).

Most of these studies compare their proposed algorithms with a

enchmark algorithm and then make the comparison using a stan-

ard binary classification measure, such as misclassification error,

eceiver operating characteristic (ROC), Kolmogorov–Smirnov (KS),

1Score (Bolton et al., 2002; Hand et al., 2007) or AUC statistics

Dal Pozzolo et al., 2014). Most of these measures are extracted by

sing a confusion matrix as shown in Table 1, where the prediction

f the algorithm ci is a function of the k features of transaction i,

i = [x1
i
, x2

i
, . . . , xk

i
] and yi is the true class of the transaction i.

From this table, several statistics are extracted. In particular:

• Accuracy = TP+TN
TP+TN+FP+FN

• Recall = TP
TP+FN

• Precision = TP
TP+FP

• F1Score = 2 Precision·Recall
Precision+Recall

However, these measures may not be the most appropriate

valuation criteria when evaluating fraud detection models, be-

ause they tacitly assume that misclassification errors carry the

ame cost, similarly with the correct classified transactions. This

ssumption does not hold in practice, when wrongly predicting

fraudulent transaction as legitimate carries a significantly dif-

erent financial cost than the inverse case. Furthermore, the ac-

uracy measure also assumes that the class distribution among

ransactions is constant and balanced (Provost, Fawcett, & Kohavi,

998), and typically the distributions of a fraud detection dataset

re skewed, with a percentage of frauds ranging from 0.005% to

.5% (Bachmayer, 2008; Bhattacharyya et al., 2011).

In order to take into account the different costs of fraud de-

ection during the evaluation of an algorithm, we may use the

odified cost matrix defined in (Elkan, 2001). In Table 2, the cost

atrix is presented, where the cost assof correct classification,

amely, true positives CTPi
, and true negatives CTNi

; and the two

ypes of misclassification errors, namely, false positives CFPi
, and

alse negatives CFNi
, are presented. This is an extension of Table 1,

ut in this case the costs are example-dependent, in other words,

pecific to each transaction i.

Hand et al. (Hand et al., 2007) proposed a cost matrix, where in

he case of false positive the associated cost is the administrative

ost CFPi
= Ca related to analyzing the transaction and contacting

he card holder. This cost is the same assigned to a true positive

TPi
= Ca, because in this case, the card holder will have to be con-

acted. However, in the case of a false negative, in which a fraud

s not detected, the cost is defined to be a hundred times larger,
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Table 3

Credit card fraud cost matrix (Correa Bahnsen et al., 2013).

Actual positive Actual negative

yi = 1 yi = 0

Predicted positive CTPi
= Ca CFPi

= Ca

ci = 1

Predicted negative CFNi
= Amti CTNi

= 0

ci = 0

C

C

C

Table 4

Summary of typical raw credit card fraud detection features.

Attribute name Description

Transaction ID Transaction identification number

Time Date and time of the transaction

Account number Identification number of the customer

Card number Identification of the credit card

Transaction type ie. Internet, ATM, POS, ...

Entry mode ie. Chip and pin, magnetic stripe, ...

Amount Amount of the transaction in Euros

Merchant code Identification of the merchant type

Merchant group Merchant group identification

Country Country of trx

Country 2 Country of residence

Type of card ie. Visa debit, Mastercard, American Express...

Gender Gender of the card holder

Age Card holder age

Bank Issuer bank of the card
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i.e. CFNi
= 100Ca. This same approach was also used in (Bachmayer,

2008).

Nevertheless, in practice, losses due to a specific fraud range

from few to thousands of Euros, which means that assuming con-

stant cost for false negatives is unrealistic. In order to address this

limitation, in Correa Bahnsen et al. (2013), we proposed a cost ma-

trix that takes into account the actual example-dependent financial

costs. Our cost matrix defines the cost of a false negative to be the

amount CFNi
= Amti of the transaction i. We argue that this cost

matrix is a better representation of the actual costs, since in prac-

tice fraud detection teams are measured by either by total mone-

tary savings or total amount saved, while it may be of interest to a

financial institution to minimize false positives, the ultimately goal

of the company is to maximize profits which is better addressed by

the minimization of the financial costs. The costs are summarized

in Table 3.

Moreover, this framework is flexible enough to include addi-

tional costs such as one that takes into account the expected in-

tangible cost by an irritated customer due to a false positive, or on

the other hand, the profit due to a satisfy customer that feels safe

by being contacted by the bank.

Afterwards, using the example-dependent cost matrix, a cost

measure is calculated taking into account the actual costs

[CTPi
,CFPi

,CFNi
,CTNi

] of each transaction i. Let S be a set of N trans-

actions i, N = |S|, where each transaction is represented by the

augmented feature vector x∗
i

= [xi,CTPi
,CFPi

,CFNi
,CTNi

], and labelled

using the class label yi ∈ {0, 1}. A classifier f which generates the

predicted label ci for each transaction i, is trained using the set S .

Then the cost of using f on S is calculated by

ost( f (S)) =
N∑

i=1

(
yi(ciCTPi

+ (1 − ci)CFNi
)

+ (1 − yi)(ciCFPi
+ (1 − ci)CTNi

)
)
.

=
N∑

i=1

yi(1 − ci)Amti + ciCa. (1)

However, as noted in (Whitrow et al., 2008), the total cost may

not be easy to interpret. So Whitrow et al. proposed a normalized

cost measure by dividing the total cost by the theoretical maxi-

mum cost, which is the cost of misclassifying every example.

ostn( f (S)) =
∑N

i=1 yi(1 − ci)Amti + ciCa

|S0|Ca + ∑N
i=1 Amti · 11(yi)

, (2)

where, S0 = {x∗
i
|yi = 0, i ∈ 1, . . . , N}, and 1c(z) is an indicator func-

tion that takes the value of one if z = c and zero if z �= c .

We propose a similar approach in Correa Bahnsen, Aouada, and

Ottersten (2015), by defining the savings of using an algorithm as

the cost of the algorithm versus the cost of using no algorithm at

all. To do that, we set the cost of using no algorithm as

ostl(S) = min{Cost( f0(S)),Cost( f1(S))}, (3)

where f0 refers to a classifier that predicts all the examples in S as

belonging to the class c0, and similarly f1 refers to a classifier that

predicts all the examples in S as belonging to the class c , the cost
1
mprovement can be expressed as the cost savings as compared

ith Costl(S).

avings( f (S)) = Costl(S) − Cost( f (S))

Costl(S)
. (4)

oreover, in the case of credit card fraud the cost of using no algo-

ithm is equal to the sum of the amounts of the fraudulent transac-

ions Costl(S) = ∑N
i=1 yiAmti. Then, the savings are calculated as:

avings( f (S)) =
∑N

i=1 yiciAmti − ciCa∑N
i=1 yiAmti

. (5)

n other words, the sum of the amounts of the corrected predicted

raudulent transactions minus the administrative cost incurred in

etect them, divided by the sum of the amounts of the fraudulent

ransactions.

For our analysis, we choose to use the savings measure instead

f the normalized cost, since in the field of credit card fraud detec-

ion, a general observation is that companies do not use predictive

odels. Therefore, the savings measure makes more sense for this

pplication. Indeed the savings measure may lead to negative val-

es which is counterintuitive, however, in the industry it makes

ense to compare the results of the algorithm versus not using any

lgorithm at all.

Lastly, it may be argued that this example-dependent strategy is

ocusing solely on large amount transaction and that smaller frauds

ould not matter. However, this framework is flexible enough to

llow modifying the cost matrix to include the available amount in

he credit card as the cost of a false negative. Then, small amount

rauds with a high potential loss would have a higher importance,

ecause a lot of money is available in the credit card.

. Feature engineering for fraud detection

When constructing a credit card fraud detection algorithm, the

nitial set of features (raw features) include information regard-

ng individual transactions. It is observed throughout the literature,

hat regardless of the study, the set of raw features is quite simi-

ar. This is because the data collected during a credit card transac-

ion must comply with international financial reporting standards

American Institute of CPAs, 2011). In Table 4, the typical credit

ard fraud detection raw features are summarized.

.1. Capturing customer spending patterns

Several studies use only the raw features in carrying their anal-

sis (Brause, Langsdorf, & Hepp, 1999; Minegishi & Niimi, 2011;

anigrahi, Kundu, Sural, & Majumdar, 2009; Sánchez et al., 2009).



A. Correa Bahnsen et al. / Expert Systems With Applications 51 (2016) 134–142 137

H

t

t

i

u

e

w

m

T

t

f

o

l

o

i

s

a

(

c

n

a

l

t

o

2

l

W

t

m

W

n

t

t

r

a

t

t

S

w

w

b

i

b

t

f

l

x

a

x

r

t

c

a

t

Fig. 1. Analysis of the time of a transaction using a 24 h clock. The arithmetic mean

of the transactions time (dashed line) do not accurately represents the actual times

distribution.
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owever, as noted in (Bolton & Hand, 2001), a single transac-

ion information is not sufficient to detect a fraudulent transac-

ion, since using only the raw features leaves behind important

nformation such as the consumer spending behavior, which is

sually used by commercial fraud detection systems (Whitrow

t al., 2008).

To deal with this, in (Bachmayer, 2008), a new set of features

ere proposed such that the information of the last transaction

ade with the same credit card is also used to make a prediction.

he objective, is to be able to detect very dissimilar continuous

ransactions within the purchases of a customer. The new set of

eatures include: time since the last transaction, previous amount

f the transaction, previous country of the transaction. Neverthe-

ess, these features do not take into account consumer behavior

ther than the last transaction made by a client, this leads to hav-

ng an incomplete profile of customers.

A more compressive way to take into account a customer

pending behavior is to derive some features using a transaction

ggregation strategy. This methodology was initially proposed in

Whitrow et al., 2008). The derivation of the aggregation features

onsists in grouping the transactions made during the last given

umber of hours, first by card or account number, then by trans-

ction type, merchant group, country or other, followed by calcu-

ating the number of transactions or the total amount spent on

hose transactions. This methodology has been used by a number

f studies (Bhattacharyya et al., 2011; Correa Bahnsen et al., 2013;

014b; Dal Pozzolo et al., 2014; Jha, Guillen, & Christopher West-

and, 2012; Sahin, Bulkan, & Duman, 2013; Tasoulis & Adams, 2008;

eston et al., 2008).

When aggregating a customer transactions, there is an impor-

ant question on how much to accumulate, in the sense that the

arginal value of new information may diminish as time passes.

hitrow et al. (2008) discuss that aggregating 101 transactions is

ot likely to be more informative than aggregating 100 transac-

ions. Indeed, when time passes, information lose their value, in

he sense that a customer spending patterns are not expected to

emain constant over the years. In particular, Whitrow et al. define

fixed time frame to be 24, 60 or 168 h.

The process of aggregating features consists in selecting those

ransactions that were made in the previous tp hours, for each

ransaction i in the dataset S,

agg ≡ TRXagg(S, i, tp)

=
{

xamt
l

∣∣∣(xid
l = xid

i

)
∧

(
hours(xtime

i , xtime
l ) < tp

)}N

l=1

, (6)

here TRXagg is a function that creates a subset of S associated

ith a transaction i with respect to the time frame tp, N = |S|, |·|
eing the cardinality of a set, xtime

i
is the time of transaction i, xamt

i

s the amount of transaction i, xid
i

the customer identification num-

er of transaction i, and hours(t1, t2) is a function that calculates

he number of hours between the times t1 and t2. Afterwards the

eature number of transactions and amount of transactions in the

ast tp hours are calculated as:

a1
i = |Sagg|, (7)

nd

a2
i =

∑
xamt ∈Sagg

xamt , (8)

espectively.

We note that this aggregation is not enough, in the sense that

he combination of different features is not being taken into ac-

ount. For example, it is not only interesting to see the total trans-

ctions, but also group them following a certain criteria, such as:

ransactions made in the last tp hours, in the same country and of
he same transaction type. For calculating such features, first we

xpand (6) as follows

agg2 ≡ TRXagg(S, i, tp, cond1, cond2)

=
{

xamt
l

∣∣∣(xid
l = xid

i

)
∧

(
hours(xtime

i , xtime
l ) < tp

)
∧

(
xcond1

l
= xcond1

i

)
∧

(
xcond2

l
= xcond2

i

)}N

l=1

, (9)

here, cond1 and cond2, could be either of the features of a trans-

ction listed in Table 4. Then, the features are calculated as:

a3
i = |Sagg2|, (10)

nd

a4
i =

∑
xamt ∈Sagg2

xamt . (11)

o further clarify how the aggregated features are calculated we

how an example. Consider a set of transactions made by a client

etween the first and third of January of 2015, as shown in Table 5.

hen we estimate the aggregated features (xa1
i

, xa2
i

, xa3
i

and xa4
i

) by

etting tp = 24 h. The different aggregated features give us differ-

nt information of the customer spending behavior. Moreover, the

otal number of aggregated features can grow quite quickly, as tp

an have several values, and the combination of combination crite-

ia can be quite large as well. In Correa Bahnsen et al. (2013), we

sed a total of 280 aggregated features. In particular we set the

ifferent values of tp to: 1, 3, 6, 12, 18, 24, 72 and 168 h. Then

alculate the aggregated features using (6), and also using (9) with

he following grouping criteria: country, type of transaction, entry

ode, merchant code and merchant group.

.2. Time features

When using the aggregated features, there is still some infor-

ation that is not completely captured by those features. In par-

icular we are interested in analyzing the time of the transaction.

he logic behind this, is that a customer is expected to make trans-

ctions at similar hours. The issue when dealing with the time of

he transaction, specifically, when analyzing a feature such as the

ean of transactions time, is that it is easy to make the mistake

f using the arithmetic mean. Indeed, the arithmetic mean is not a

orrect way to average time because, as shown in Fig. 1, it does not

ake into account the periodic behavior of the time feature. For ex-

mple, the arithmetic mean of transaction time of four transactions

ade at 2:00, 3:00, 22:00 and 23:00 is 12:30, which is counter in-

uitive since no transaction was made close to that time.
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Table 5

Example calculation of aggregated features. Where, xa1
i

is the number of transactions in the last 24 h,

xa2
i

is the sum of the transactions amounts in the same time period, xa3
i

is the number of transactions

with the same transaction type and same country in the last 24 h and xa4
i

is the sum of the transactions

amounts of the transactions with the same type and country in the last 24 h.

Raw features Aggregated features

TrxId CardId Time Type Country Amount xa1
i

xa2
i

xa3
i

xa4
i

1 1 01/01/15 18:20 POS Luxembourg 250 0 0 0 0

2 1 01/01/15 20:35 POS Luxembourg 400 1 250 1 250

3 1 01/01/15 22:30 ATM Luxembourg 250 2 650 0 0

4 1 02/01/15 00:50 POS Germany 50 3 900 0 0

5 1 02/01/15 19:18 POS Germany 100 3 700 1 50

6 1 02/01/15 23:45 POS Germany 150 2 150 2 150

7 1 03/01/15 00:00 POS Luxembourg 10 3 400 0 0

Fig. 2. Fitted von Mises distribution including the periodic mean (dashed line) and

the probability distribution (purple area). (For interpretation of the references to

colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Expected time of a transaction (green area). Using the confidence interval,

a transaction can be flag normal or suspicious, depending whether or not the time

of the transaction is within the confidence interval. (For interpretation of the ref-

erences to colour in this figure legend, the reader is referred to the web version of

this article.)

Table 6

Example calculation of periodic features. Where xp1
i

is a binary feature that in-

forms whenever a transaction is being made within the confidence interval of

the time of the transactions.

Raw features Arithmetic Periodic features

Id Time mean mean Confidence interval xp1
i

1 01/01/15 18:20 – – – –

2 01/01/15 20:35 – – – –

3 01/01/15 22:30 19:27 19:27 15:45 - 23:10 True

4 02/01/15 00:50 20:28 20:28 17:54 - 23:03 False

5 02/01/15 19:18 16:34 22:34 18:51 - 00:17 True

6 02/01/15 23:45 16:19 21:07 15:21 - 02:52 True

7 03/01/15 06:00 18:33 22:33 17:19 - 01:46 False

b

d

i

fi

a

w

o

fi

c

t

t

t

e

We propose to overcome this limitation by modeling the time

of the transaction as a periodic variable, in particular using the von

Mises distribution (Fisher, 1995). The von Mises distribution, also

known as the periodic normal distribution, is a distribution of a

wrapped normal distributed variable across a circle. The von Mises

distribution of a set of examples D = {t1, t2, · · · , tN} is defined as

D ∼ vonmises

(
μvM,

1

σvM

)
, (12)

where μvM and σ vM are the periodic mean and periodic standard

deviation, respectively. In Appendix A we present the calculation

of μvM and σ vM.

In particular we are interested in calculating a confidence inter-

val (CI) for the time of a transaction. For doing that, initially we

select a set of transactions made by the same client in the last tp

hours,

Sper ≡ TRXvM(S, i, tp)

=
{

xtime
l

∣∣∣(xid
l = xid

i

)
∧

(
hours(xtime

i , xtime
l ) < tp

)}N

l=1

. (13)

Afterwards, the probability distribution function of the time of the

set of transactions is calculated as:

xtime
i ∼ vonmises

(
μvM(Sper),

1

σvM(Sper)

)
. (14)

In Fig. 2, the von Mises distribution calculation for the earlier

example is shown. It is observed that the arithmetic mean is quite

different from the periodic mean, the latter being a more realistic

representation of the actual transactional times. Then, using the es-

timated distribution, a new set of features can be extracted, ie., a
inary feature (x
p1
i

) if a new transaction time is within the confi-

ence interval range with probability α. An example is presented

n Fig. 3. Furthermore, other features can be calculated, as the con-

dence interval range can be calculated for several values of α, and

lso the time period can have an arbitrary size.

Additionally, following the same example presented in Table 5,

e calculate a feature x
p1
i

, as a binary feature that takes the value

f one if the current time of the transaction is within the con-

dence interval of the time of the previous transactions with a

onfidence of α = 0.9. The example is shown in Table 6, where

he arithmetic and periodic means differ, as for the last transac-

ion both means are significantly different. Moreover, the new fea-

ure helps to get a better understanding of when a customer is

xpected to make transactions.
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Table 7

Summary of the datasets.

Set Transactions % Frauds Cost

Total 236,735 1.50 895,154

Training 94,599 1.51 358,078

Validation 70,910 1.53 274,910

Testing 71,226 1.45 262,167
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Finally, when calculating the periodic features, it is important

o use longer time frames tp, since if the distribution is calculated

sing only a couple of transactions it may not be as relevant of a

ustomer behavior patterns, compared against using a full year of

ransactions. Evidently, if tp is less than 24 h, any transaction made

fterwards will not be expected to be within the distribution of

revious transactional times. To avoid this, we recommend using

t least the previous 7 days of transactional information, therefore,

aving a better understanding of its behavioral patterns. Lastly, this

pproach can also be used to estimate features such as the ex-

ected day of the week of transactions, as some customers may

nly use their credit cards during the weekend nights, or during

orking hours.

. Experimental setup

In this section, first the dataset used for the experiments is de-

cribed. Afterwards, the partitioning of the dataset is presented.

astly, the algorithms used to detect fraud are shown.

.1. Database

For this paper we used a dataset provided by a large Euro-

ean card processing company. The dataset consists of fraudu-

ent and legitimate transactions made with credit and debit cards

etween January 2012 and June 2013. The total dataset contains

20,000,000 individual transactions, each one with 27 attributes,

ncluding a fraud label indicating whenever a transaction is iden-

ified as fraud. This label was created internally in the card pro-

essing company, and can be regarded as highly accurate. In the

ataset only 40,000 transactions were labeled as fraud, leading to

fraud ratio of 0.025%.

Furthermore, using the methodologies for feature extraction de-

cribed in Section 3, we estimate a total of 293 features. Also, for

he experiments, a smaller subset of transactions with a higher

raud ratio, corresponding to a specific group of transactions, is se-

ected. This dataset contains 236,735 transactions and a fraud ra-

io of 1.50%. In this dataset, the total financial losses due to fraud

re 895,154 Euros. This dataset was selected because it is the one

here most frauds occur.

.2. Database partitioning

From the total dataset, 3 different datasets are extracted: train-

ng, validation and testing. Each one containing 50%, 25% and 25%

f the transactions respectively. Table 7 summarizes the different

atasets.

.3. Algorithms

For the experiments we used three cost-insensitive classifica-

ion algorithms: decision tree (DT), logistic regression (LR) and

random forest (RF), using the implementation of Scikit-learn

Pedregosa et al., 2011). We also used the Bayes minimum risk

BMR) model we proposed in Correa Bahnsen, Stojanovic, Aouada,

nd Ottersten (2014b). The BMR is a decision model based on

uantifying tradeoffs between various decisions using probabilities
nd the costs that accompany such decisions. In the case of credit

ard fraud detection, a transaction is classified as fraud if the fol-

owing condition holds true:

aP(p f |x∗
i ) + CaP(pl|x∗

i ) ≤ AmtiP(p f |x∗
i ), (15)

nd as legitimate if not, where P(pl|x∗
i
) is the estimated probabil-

ty of a transaction being legitimate given x∗
i
. Similarly P(p f |x∗

i
) is

he probability of a transaction being fraud given x∗
i
. An extensive

escription of the methodology can be found in Correa Bahnsen

t al. (2013).

Additionally, we used the cost-sensitive logistic regression algo-

ithm, proposed in Correa Bahnsen, Aouada, and Ottersten (2014a).

his method introduces the example-dependent costs into a logis-

ic regression, by changing the objective function of the model to

ne that is cost-sensitive. The new cost function is defined as:

c(θ ) = 1

N

N∑
i=1

(
yi(hθ (Xi)CTPi

+ (1 − hθ (Xi))CFNi
)

+ (1 − yi)(hθ (Xi)CFPi
+ (1 − hθ (Xi))CTNi

)
)
, (16)

here hθ (Xi) = g(
∑k

j=1 θ jx
j
i
) refers to the hypothesis of i given the

arameters θ , and g(·) is the logistic sigmoid function, defined as

(z) = 1/(1 + e−z). To find the coefficients of the regression θ , the

ost function is minimized by using binary genetic algorithms.

Lastly, we used a cost-sensitive decision tree algorithm, pro-

osed in (Correa Bahnsen et al., 2015). In this method a new split-

ing criteria is used during the tree construction. In particular in-

tead of using a traditional splitting criteria such as Gini, entropy

r misclassification, the Cost as defined in (2), of each tree node

s calculated, and the gain of using each split evaluated as the de-

rease in total Savings of the algorithm.

Finally, because these algorithms suffer when the label distribu-

ion is skewed towards one of the classes (Hastie et al., 2009), it is

ommon to perform sampling procedures in order to have a more

alanced class distribution (Hulse & Khoshgoftaar, 2007). However,

n previous studies we investigated the impact of sampling on

he fraud detection models, and indeed neither under-sampling or

ver-sampling improved the results measured by financial savings,

s the distribution of the example-dependent costs is modified by

he sampling procedures (Correa Bahnsen et al., 2013; 2014b).

. Results

We estimated the different algorithms presented in Section 4.3,

n particular: decision tree (DT), logistic regression (LR), random

orest (RF), with and without the Bayes minimum risk threshold

BMR), and the cost-sensitive algorithms, cost-sensitive logistic re-

ression (CSLR) and cost-sensitive decision tree (CSDT). Moreover,

ach algorithm was trained, using the different sets of features:

aw features (raw) as shown in Table 4, aggregated features (agg1)

sing Eqs. (7) and (8), expanded aggregated features (agg2) using

qs. (10) and (11), lastly the periodic features (per) as described in

ection 3.2.

In Fig. 4, we present the results measured by savings, see (5),

f the different algorithms using only the raw features (raw), only

he aggregated features (agg1) and both (raw + agg1). First, note

hat all the algorithms generate savings, i.e., no algorithm performs

orse than using no algorithm at all. The CSDT algorithm is the

ne that performs best, in particular when using both the raw and

ggregated features. When analyzing the results using the different

et of features, the aggregated features perform better than using

nly the raw features in all the cases. This confirms the intuition

f the need of using the customer behavior patterns in order to

dentify fraudulent transactions. On average, by using both the raw

nd the aggregated features the savings are doubled.
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Fig. 4. Comparison of the different algorithms, trained with only the raw features (raw), only the aggregated features (agg1) and both (raw + agg1). In average, by using both

the raw and the aggregated features the savings are doubled.

Fig. 5. Comparison of the extended aggregated (agg2) set of features. It is observed, that when the proposed expanded aggregated features are combined with the raw and

aggregated features, an increase in savings of 16.4% is made.
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Afterwards, we evaluate the results when using our proposed

expanded aggregated features (agg2). In Fig. 5, the results are

shown. It is observed that when comparing the raw + agg1 and

raw + agg2, the results of the new features are worse than the

traditional aggregated features. However, when the proposed ex-

panded aggregated features are combined with the raw and aggre-

gated features, an increase of 16.4% in savings is made. Therefore,

there is a need to use the proposed extended aggregated features

with the standard aggregated features in order to improve the re-

sults of the algorithms. Moreover, in all cases the use of the raw

and both aggregated set of features perform better than using only

the raw and aggregated features.

Then, we evaluate the results of the periodic set of features.

In Fig. 6, the results are shown. The new set of periodic features
ncrease the savings by an additional 13%. The algorithm with the

ighest savings is the CSDT, closely followed by CSLR. Similarly to

sing the extended aggregated features, the periodic features do

ot perform well when used only with raw features. It is when

ombined with both sets of aggregated features that an increase in

avings is found.

Finally, in Fig. 7, we compared the average increase in savings

hen introducing each set of features compared with the results

f using only the set of raw features. First, the standard aggregated

eatures give an average increase in savings of 201%. Moreover, by

ntroducing the extended aggregated features, the savings increase

n average by 252% compared with the models trained using only

he raw features. As previously shown, in order to improve the re-

ults, these new features need to be combined with the standard
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Fig. 6. Comparison of the proposed periodic (per) set of features. It is observed, that when the new set of features are combined with both aggregated sets of features, an

additional increase of savings of 16.4% is made.

Fig. 7. Comparison of the average increase in savings when introducing each set of features compared with the results of using only the raw set of features.
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ggregated features in order to increase savings. Lastly, when com-

ining the previous features with the periodic features, the results

ncrease by 287% compared with using raw features only.

. Conclusion and discussion

In this paper we have shown the importance of using fea-

ures that analyze the consumer behavior of individual card hold-

rs when constructing a credit card fraud detection model. We

how that by preprocessing the data in order to include the re-

ent consumer behavior, the performance increases by more than

00% compared to using only the raw transaction information.

Moreover, we extend the current approaches to analyze the

onsumer behavior by first proposing a new set of features that

nable complex relations of the data to be developed. Then, we
roposed a method to analyze the periodic behavior of the time of

transaction using the von Mises distribution. The new proposed

et of features increases the performance by 252% and 287%, re-

pectively.

However, because this study was done using a dataset from a

nancial institution, we were not able to deeply discuss the spe-

ific features created, and the individual impact of each feature.

evertheless, our framework is ample enough to be recreated with

ny kind of transactional data. Furthermore, when implementing

his framework on a production fraud detection system, questions

egarding response and calculation time of the different features

hould be addressed. In particular, since there is no limit on the

umber of features that can be calculated, a system may take too

ong to make a decision based on the time spent recalculating the

eatures with each new transaction.
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Appendix A. Von Mises distribution

In this section we show the calculation of the periodic mean

and periodic standard deviation of the von Mises distribution.

The von Mises distribution, also known as the periodic nor-

mal distribution, is a distribution of a wrapped normal dis-

tributed variable across a circle (Fisher, 1995). The von Mises

distribution of a set of examples D = {t1, t2, · · · , tN} is defined

as

D ∼ vonmises

(
μvM,

1

σvM

)
, (A.1)

where μvM and σ vM are the periodic mean and periodic standard
deviation, respectively, and are calculated as follows

μvM(D)

= 2 tan−1

⎛
⎜⎜⎜⎜⎜⎝

∑
t j∈D

sin(t j)(√( ∑
t j∈D

cos(t j)

)2

+
( ∑

t j∈D

sin(t j)

)2

+ ∑
t j∈D

cos(t j)

)
⎞
⎟⎟⎟⎟⎟⎠,

(A.2)

and

σvM(D) =

√√√√√√√√ln

⎛
⎜⎜⎜⎝ 1(

1
N

∑
t j∈D

sin(t j)

)2

+
(

1
N

∑
t j∈D

cos(t j)

)2

⎞
⎟⎟⎟⎠, (A.3)

respectively (Bishop, 2006).
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